| 
Pythonでの数値計算を高速化
	
	大量のデータ処理をする時の速度を上げたい時は,Pythonのリストではなく NumPyの配列 (ndarray) を使用
	 
ndarray 配列
	
	1次元 (ベクトル) : numpy.array
	2次元 (行列) : numpy.matrix
 3次元以上 (「テンソル」)
 
 
 
	$ python
>>> import numpy as np
>>> a = np.matrix([[0,1,2],[3,4,5]])
>>> b = np.matrix([[0,1],[2,3],[4,5]])
>>> c = np.matmul(a,b)
>>> a
[[0 1 2]
 [3 4 5]]
>>> b
[[0 1]
 [2 3]
 [4 5]]
>>> c
[[10 13]
 [28 40]]
>>> a = np.array([0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23])
>>> a_2_3_4 = a.reshape([2,3,4])
>>> a_2_3_4
array([[[ 0,  1,  2,  3],
        [ 4,  5,  6,  7],
        [ 8,  9, 10, 11]],
       [[12, 13, 14, 15],
        [16, 17, 18, 19],
        [20, 21, 22, 23]]])
>>> a_2_2_2_3 = a.reshape([2,2,2,3])
>>> a_2_2_2_3
array([[[[ 0,  1,  2],
         [ 3,  4,  5]],
        [[ 6,  7,  8],
         [ 9, 10, 11]]],
       [[[12, 13, 14],
         [15, 16, 17]],
        [[18, 19, 20],
         [21, 22, 23]]]])>>>
	 |