teststyle |
displaystyle |
TeX 式 |
|
\[
\begin{align}
a_1&=b_1+c_1 \\
a_2&=b_2+c_2-d_2+e_2
\end{align}
\]
|
\begin{align}
a_1&=b_1+c_1 \\
a_2&=b_2+c_2-d_2+e_2
\end{align}
|
|
\[
\begin{align*}
a_1&=b_1+c_1 \\
a_2&=b_2+c_2-d_2+e_2
\end{align*}
\]
|
\begin{align*}
a_1&=b_1+c_1 \\
a_2&=b_2+c_2-d_2+e_2
\end{align*}
|
|
\[
\begin{align*}
a_{11} &=b_{11}
& a_{12}&=b_{12} \\
a_{21} &=b_{21}
& a_{22}&=b_{12}+c_{22}
\end{align*}
\]
|
\begin{align*}
a_{11} &=b_{11}
& a_{12}&=b_{12} \\
a_{21} &=b_{21}
& a_{22}&=b_{12}+c_{22}
\end{align*}
|
|
\[
\begin{align}
f(b)&=f(a)+\frac {b-a}{1!}f'(a)\\
&\quad +\frac {(b-a)^2}{2!}f''(a)\\
&\qquad +\frac {(b-a)^3}{3!}f''(a)\\
&\qquad\quad +\frac {(b-a)^4}{4!}f''(a)\\
&\qquad\qquad \cdots +\frac {(b-a)^n}{n!}f^{(n)}(a)+R_n(a)
\end{align}
\]
|
\begin{align}
f(b)&=f(a)+\frac {b-a}{1!}f'(a)\\
&\quad +\frac {(b-a)^2}{2!}f''(a)\\
&\qquad +\frac {(b-a)^3}{3!}f''(a)\\
&\qquad\quad +\frac {(b-a)^4}{4!}f''(a)\\
&\qquad\qquad \cdots
+\frac {(b-a)^n}{n!}f^{(n)}(a)+R_n(a)
\end{align}
|
\(
x^2 + y^2 - z^2 =2
\)
|
\[
x^2 + y^2 - z^2 =2
\]
|
x^2 + y^2 - z^2 =2
|
\(
x=\sqrt{2}
\)
|
\[
x=\sqrt{2}
\]
|
x=\sqrt{2}
|
\(
e^{i\pi} = -1
\)
|
\[
e^{i\pi} = -1
\]
|
e^{i\pi} = -1
|
\(
x = \frac{a}{b}
\)
|
\[
x = \frac{a}{b}
\]
|
x = \frac{a}{b}
|
\(
\overrightarrow{AB}
\)
|
\[
\overrightarrow{AB}
\]
|
\overrightarrow{AB}
|
\(
\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\)
|
\[
\frac{-b\pm\sqrt{b^2-4ac}}{2a}
\]
|
\frac{-b\pm\sqrt{b^2-4ac}}{2a}
|
\(
F \propto
\frac{q_1\ q_2}{r^2}
\)
\(
\vec{F} =
\frac{1}{4\pi \varepsilon_0}
\frac{q_1\ q_2}{|\vec{r}|^2}
\frac{\vec{r}}{|\vec{r}|}
\)
|
\[
F \propto
\frac{q_1\ q_2}{r^2}
\]
\[
\vec{F} =
\frac{1}{4\pi \varepsilon_0}
\frac{q_1\ q_2}{|\vec{r}|^2}
\frac{\vec{r}}{|\vec{r}|}
\]
|
\F \propto
\frac{q_1\ q_2}{r^2}
\vec{F} =
\frac{1}{4\pi \varepsilon_0}
\frac{q_1\ q_2}{|\vec{r}|^2}
\frac{\vec{r}}{|\vec{r}|}
|
|
\(
N(m,\sigma^{2})=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^{2}}}
\)
|
\[
N(m,\sigma^{2})=\frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^{2}}}
\]
|
N(m,\sigma^{2})=
\frac{1}{\sigma\sqrt{2\pi}}
e^{-\frac{(x-m)^2}{2\sigma^{2}}}
|
|
\(
f(x)=\int_0^{x}g(t)\,dt
\)
|
\[
f(x)=\int_0^{x}g(t)\,dt
\]
|
f(x)=\int_0^{x}g(t)\,dt
|
\(
\iota(f,z_{0})=\frac{1}{2 \pi i}\oint\frac{dz}{z_{0}-f(z)}
\)
|
\[
\iota(f,z_{0})=\frac{1}{2 \pi i}\oint\frac{dz}{z_{0}-f(z)}
\]
|
\iota(f,z_{0})=
\frac{1}{2 \pi i}
\oint\frac{dz}{z_{0}-f(z)}
|
|
|
\[
\left(
\begin{array}{c}
x^1 \\
\vdots \\
x^n \\
\end{array}
\right)
\qquad
\begin{array}{c}
t \\
\\
\\
\end{array}
\left(
\begin{array}{c}
x^1 \\
x^2 \\
x^3 \\
\end{array}
\right)
\]
|
\left(
\begin{array}{c}
x^1 \\
\vdots \\
x^n \\
\end{array}
\right)
\begin{array}{c}
t \\
\\
\\
\end{array}
\left(
\begin{array}{c}
x^1 \\
x^2 \\
x^3 \\
\end{array}
\right)
|
|
|
\[
\left(
\begin{array}{ccc}
a_{11} & \cdots & a_{1n} \\
& \cdots & \\
a_{n1} & \cdots & a_{nn} \\
\end{array}
\right) \\
\\
\left(
\begin{array}{ccc}
a^1_1 & \cdots & a^1_n \\
& \cdots & \\
a^n_1 & \cdots & a^n_n \\
\end{array}
\right) \\
\\
\left(
\begin{array}{ccc}
a^1_1 & \cdots & a^n_1 \\
& \cdots & \\
a^1_n & \cdots & a^n_n \\
\end{array}
\right)
\]
|
\left(
\begin{array}{ccc}
a_{11} & \cdots & a_{1n} \\
& \cdots & \\
a_{n1} & \cdots & a_{nn} \\
\end{array}
\right)
\left(
\begin{array}{ccc}
a^1_1 & \cdots & a^1_n \\
& \cdots & \\
a^n_1 & \cdots & a^n_n \\
\end{array}
\right)
\left(
\begin{array}{ccc}
a^1_1 & \cdots & a^n_1 \\
& \cdots & \\
a^1_n & \cdots & a^n_n \\
\end{array}
\right)
|
|
|
\[
A=\left(
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right)
\]
|
A=\left(
\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33} \\
\end{array}
\right)
|
|
|
\[
\left(
\begin{array}{cccc}
a_1 & 0 & \cdots &\\
0 & a_2 & 0 & \cdots \\
& \cdots & \ddots & \cdots \\
& \cdots & 0 & a_n \\
\end{array}
\right)
\]
|
\left(
\begin{array}{cccc}
a_1 & 0 & \cdots &\\
0 & a_2 & 0 & \cdots \\
& \cdots & \ddots & \cdots \\
& \cdots & 0 & a_n \\
\end{array}
\right)
|
|
|
\[
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44 \\
51 & 52 & 53 & 54 \\
61 & 62 & 63 & 64 \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
\]
|
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44 \\
51 & 52 & 53 & 54 \\
61 & 62 & 63 & 64 \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
|
|
\(
\int_S \vec{F}(\vec{x}) \cdot d\vec{S} =
\begin{cases}
4 \pi & (\vec{a} \in D) \\
0 & (\vec{a} \notin D)
\end{cases}
\)
|
\[
\int_S \vec{F}(\vec{x}) \cdot d\vec{S} =
\begin{cases}
4 \pi & (\vec{a} \in D) \\
0 & (\vec{a} \notin D)
\end{cases}
\]
|
\int_S \vec{F}(\vec{x})
\cdot d\vec{S} =
\begin{cases}
4 \pi & (\vec{a} \in D) \\
0 & (\vec{a} \notin D)
\end{cases}
|
|