Up 「ポテンシャル関数」の次元拡張 作成: 2017-12-23
更新: 2017-12-23


    「仕事ポテンシャル場」の構成要素は,以下のものであった:
      \[ f : S \longrightarrow K \\ f^{'} : {\bf x} \longmapsto \left( \frac{\partial f({\bf x})}{\partial x}, \frac{\partial f({\bf x})}{\partial y}, \frac{\partial f({\bf x})}{\partial z} \right) \ \ \ \ ({\bf x} \in S) \\ {\bf X} : {\bf x} \longmapsto \left( {\bf X}_x({\bf x}), {\bf X}_y({\bf x}), {\bf X}_z({\bf x}) \right) \,; \ \ \ S \longrightarrow K \times K \times K \\ f^{'}({\bf x}) \cdot {\bf X}({\bf x}) = \frac{\partial f({\bf x})}{\partial x} {\bf X}_x({\bf x}) \,+\, \frac{\partial f({\bf x})}{\partial y} {\bf X}_y({\bf x}) \,+\, \frac{\partial f({\bf x})}{\partial z} {\bf X}_z({\bf x}) \\ = \left( \frac{\partial f({\bf x})}{\partial x} ,\, \frac{\partial f({\bf x})}{\partial y} ,\, \frac{\partial f({\bf x})}{\partial z} \right) \left( \begin{array}{c} {\bf X}_x({\bf x}) \\ {\bf X}_y({\bf x}) \\ {\bf X}_z({\bf x}) \\ \end{array} \right) \]

    このうち,fを択んで,これの次元拡張を行う。
    即ち,f をつぎの関数に替える:
      \[ Y = ( Y^1, \cdots, Y^n) : S \longrightarrow \overbrace{K \times \cdots \times K}^{n} \]
    これに伴い,上の内容でfが係わるところは,つぎのように変更される:
      \[ Y^{'} : {\bf x} \longmapsto \left( \begin{array}{ccc} \frac{\partial Y^1({\bf x})}{\partial x} & \frac{\partial Y^1({\bf x})}{\partial y} & \frac{\partial Y^1({\bf x})}{\partial z} \\ & \cdots & \\ \frac{\partial Y^n({\bf x})}{\partial x} & \frac{\partial Y^1({\bf x})}{\partial y} & \frac{\partial Y^n({\bf x})}{\partial z} \\ \end{array} \right) \\  \\ Y^{'}({\bf x}) \, {\bf X}({\bf x}) = \left( \begin{array}{ccc} \frac{\partial Y^1({\bf x})}{\partial x} & \frac{\partial Y^1({\bf x})}{\partial y} & \frac{\partial Y^1({\bf x})}{\partial z} \\ & \cdots & \\ \frac{\partial Y^n({\bf x})}{\partial x} & \frac{\partial Y^1({\bf x})}{\partial y} & \frac{\partial Y^n({\bf x})}{\partial z} \\ \end{array} \right) \left( \begin{array}{c} {\bf X}_x({\bf x}) \\ {\bf X}_y({\bf x}) \\ {\bf X}_z({\bf x}) \\ \end{array} \right) \]