\( C_0 \) の基底は,\( \{ v_1, v_2, v_3, v_4 \} \) をとる。
各 \( e_i \) のバウンダリは,
\[
\begin{align}
\partial e_1 = v_2 - v_1 = &- v_1 &+ v_2 & & \\
\partial e_2 = v_3 - v_1 = &- v_1 & &+ v_3 & \\
\partial e_3 = v_4 - v_1 = &- v_1 & & &+ v_4 \\
\partial e_4 = v_3 - v_2 = & &- v_2 &+ v_3 & \\
\partial e_5 = v_4 - v_2 = & &- v_2 & &+ v_4 \\
\partial e_6 = v_4 - v_3 = & & &- v_3 &+ v_1 \\
\end{align}
\]
よって,基底 \( \{ e_i \}, \{ v_j \} \) に対する \( \partial_1 : C_1 \rightarrow C_0 \) の表現行列は,
\[
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e_4 \\ e_5 \\ e_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
-1 & 1 & & \\
-1 & & 1 & \\
-1 & & & 1 \\
& -1 & 1 & \\
& -1 & & 1 \\
& & -1 & 1 \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
\]
これに対し,
\( e'_5 = e_5 - e_3 \)
\( e'_6 = e_6 - e_3 \)
\[
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e_4 \\ e'_5 \\ e'_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
-1 & 1 & & \\
-1 & & 1 & \\
-1 & & & 1 \\
& -1 & 1 & \\
1 & -1 & & \\
1 & & -1 & \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
\]
\( e'_4 = e_4 - e_2 \)
\( e''_5 = e'_5 + e_1 \)
\( e''_6 = e'_6 + e_2 \)
\[
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e'_4 \\ e''_5 \\ e''_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
-1 & 1 & & \\
-1 & & 1 & \\
-1 & & & 1 \\
1 & -1 & & \\
& & & \\
& & & \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
\]
\( e''_4 = e'_4 + e_1 \)
\[
\begin{align}
\begin{array}{c c}
& \begin{array} {@{} c c c c @{}}
v_1 & v_2 & v_3 & v_4
\end{array} \\
\begin{array}{c}
e_1 \\ e_2 \\ e_3 \\ e''_4 \\ e''_5 \\ e''_6
\end{array}
\hspace{-1em} &
\left(
\begin{array}{@{} c c c c @{}}
-1 & 1 & & \\
-1 & & 1 & \\
-1 & & & 1 \\
& & & \\
& & & \\
& & & \\
\end{array}
\right) \\
\mbox{} % Blank line to match column names so as to align the = vertically
\end{array} \\[-12pt] % Correction for blank line
\end{align}
\]
この行列は,つぎのことを示している:
- 写像 \( \partial_1 \) では,6次元のうち3次元が潰れる。
即ち,\( Ker( \partial_1 ) \) が3次元,\( Ker( \partial_1 ) \) の補空間が3次元。
- つぎの3つのサイクルが,\( Ker( \partial_1 ) \) の基底を成す:
\[
e''_4 = e'_4 + e_1 = ( e_4 - e_2 ) + e_1 = e_1 + e_4 + ( - e_2 ) \\
e''_5 = e'_5 + e_1 = ( e_5 - e_3 ) + e_1 = e_1 + e_5 + ( - e_3 )\\
e''_6 = e'_6 + e_2 = ( e_6 - e_3 ) + e_2 = e_2 + e_6 + ( - e_3 )
\]
- 有向辺 \( e_1, e_2, e_3 \) が,補空間の基底を成す。
|