Up \( \partial_2 \) の表現行列 作成: 2023-10-11
更新: 2023-10-11


    \( C_2 \) の基底を,つぎのように定めた:

    \( C_1 \) の基底は,\( \{ e_1, e_2, e_3, e_4, e_5, e_6 \} \) をとる。

    各 \( f_k \) のバウンダリは,
      \[ \begin{align} \partial f_1 = e_1 + e_4 - e_2 =\ & e_1 & - e_2 & & + e_4 & &\\ \partial f_2 = e_1 + e_5 - e_3=\ & e_1 & & - e_3 & & + e_5 & \\ \partial f_3 = e_2 + e_6 - e_3 =\ & & e _2 & - e_3 & & & + e_6 \\ \partial f_4 = e_4 + e_6 - e_5 =\ & & & & e_4 & - e_5 & + e_8 \\ \end{align} \]

    よって,基底 \( \{ f_k\}, \{ e_i \} \) に対する \( \partial_2 : C_2 \rightarrow C_1 \) の表現行列は,
      \[ \begin{align} \begin{array}{c c} & \begin{array} {@{} c c c c @{}} \ \ \ e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \end{array} \\ \begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f_4 \end{array} \hspace{-1em} & \left( \begin{array}{@{} c c c c c c @{}} & 1 & -1 & & 1 & & \ \ \ \\ & 1 & & -1 & & 1 & \\ & & 1 & -1 & & & 1 \\ & & & & 1 & -1 & 1 \\ \end{array} \right) \\ \mbox{} % Blank line to match column names so as to align the = vertically \end{array} \\[-12pt] % Correction for blank line \end{align} \]

    これに対し

    \( f'_4 = f_4 - f_3 \)
      \[ \begin{align} \begin{array}{c c} & \begin{array} {@{} c c c c @{}} \ \ \ e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \end{array} \\ \begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f'_4 \end{array} \hspace{-1em} & \left( \begin{array}{@{} c c c c c c @{}} & 1 & -1 & & 1 & & \ \ \ \\ & 1 & & -1 & & 1 & \\ & & 1 & -1 & & & 1 \\ & & -1 & 1 & 1 & -1 & \\ \end{array} \right) \\ \mbox{} % Blank line to match column names so as to align the = vertically \end{array} \\[-12pt] % Correction for blank line \end{align} \]

    \( f''_4 = f'_4 + f_2 \)
      \[ \begin{align} \begin{array}{c c} & \begin{array} {@{} c c c c @{}} \ \ \ e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \end{array} \\ \begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f''_4 \end{array} \hspace{-1em} & \left( \begin{array}{@{} c c c c c c @{}} & 1 & -1 & & 1 & & \ \ \ \\ & 1 & & -1 & & 1 & \\ & & 1 & -1 & & & 1 \\ & 1 & -1 & & 1 & & \\ \end{array} \right) \\ \mbox{} % Blank line to match column names so as to align the = vertically \end{array} \\[-12pt] % Correction for blank line \end{align} \]

    \( f'''_4 = f''_4 - f_1 \)
      \[ \begin{align} \begin{array}{c c} & \begin{array} {@{} c c c c @{}} \ \ \ e_1 & e_2 & e_3 & e_4 & e_5 & e_6 \end{array} \\ \begin{array}{c} f_1 \\ f_2 \\ f_3 \\ f'''_4 \end{array} \hspace{-1em} & \left( \begin{array}{@{} c c c c c c @{}} & 1 & -1 & & 1 & & \ \ \ \\ & 1 & & -1 & & 1 & \\ & & 1 & -1 & & & 1 \\ & & & & & & \\ \end{array} \right) \\ \mbox{} % Blank line to match column names so as to align the = vertically \end{array} \\[-12pt] % Correction for blank line \end{align} \]

    この行列は,つぎのことを示している:
      \( Im( \partial_2 ) \) は3次元。
      実際,つぎの3つのバウンダリサイクルがこれの基底を成す: \[ \partial f_1 = e_1 + e_4 - e_2 \\ \partial f_2 = e_1 + e_5 - e_3 \\ \partial f_3 = e_2 + e_6 - e_3 \\ \]