Up 「かけ算の順序」を論ずる理由 作成: 2012-01-04
更新: 2012-01-05


    本論考を以て,「かけ算の順序」を論じようとする。
    なぜ,論じようとするのか?
    「かけ算の順序」論争というものがあるからである。

    本論考は,「かけ算の順序」論争を取り上げる。 「かけ算の順序」論争を取り上げるのは,「かけ算の順序は,どうでもよいのか?それとも決定的なのか?」の問題に入っていくためではない。 (実際,「かけ算の順序」の数学では,かけ算の順序は決定的であり,このことに議論の余地はない。)
    「かけ算の順序」論争を取り上げるのは,それが非数学と非数学の論争,数学とは無縁の論争だからである。 このとこをはっきりさせる必要がある。
    なぜはっきりさせることが必要なのか?
    学校数学がこの論争に迷わされてさらにおかしくなるということが,あり得るからである。 このことが実際に起こらないようにしなければならない。

    「学校数学がこの論争に迷わされてさらにおかしくなるということが,ないようにする」とは,どういうことか?
    この認識は,つぎの<立場>から出てくるものである:

    1.「学校数学」に対する立場
    学校数学は,数学の方便である。
    数学の方便であることは,数学からの逸脱とは違う。
    学校数学は,数学から逸脱するとき,何ものでもなくなる。 (実際,「数学から逸脱した学校数学」は何ものであり得るのか?)

    2.「数学学習」に対する立場
    数学学習は,基本の型/形(かた)の鍛錬/修行である。
    この基本型/形を捉え損なって,別の型/形を学習内容に据えるとき,それは数学学習ではなくなる。

    3. 学校数学/文科省の「数と量」に対する立場
    学校数学/文科省の「数と量」は,数学の「数と量」からの逸脱になっている。 ──数学の「数と量」とは別のものを,「数と量」であるとして生徒に教えている。

    4.「かけ算の順序」という主題に対する立場
    「かけ算の順序」は,数学の「数と量」の学習として鍛錬/修行することになる基本の型/形のうちの一つである。 あるいは,基本型/形の構成になるところのものである。
    「数と量」を数学として学習しようとするときは,「かけ算の順序」の数学を学習することになる。

    5.「かけ算の順序」論争に対する立場
    「かけ算の順序」論争の問題点は,<「かけ算の順序」の数学>への意識が無いことである。 そして,意識が無いのは,<「かけ算の順序」の数学>があることを知らないためである。
    「かけ算の順序」論争は,<「かけ算の順序」の数学>とは無縁のところで展開される。 非数学と非数学の論争であり,どっちに転んでも非数学である。
    そこで,これらの非数学に<「かけ算の順序」の数学>を厳然と対置しておくことが必要になる。