検算
\[
( \tau_s ( y^2 + z^2 ) + \tau_c ( x y ) )^2 \\
+ ( - \tau_s ( x y ) - \tau_c ( z^2 + x^2 ) )^2 \\
+ ( - \tau_s ( z x ) + \tau_c ( y z ) )^2
\\ \ \\ \ \\
= (\tau_s)^2 ( y^2 + z^2 )^2 + 2 \tau_s ( y^2 + z^2 ) \tau_c ( x y ) + (\tau_c)^2 x^2 y^2 \\
+ (\tau_s)^2 x^2 y^2 +2 \tau_s ( x y ) \tau_c ( z^2 + x^2 ) + (\tau_c)^2 ( z^2 + x^2 )^2 \\
+ ( \tau_s)^2 z^2 x^2 -2 \tau_s ( z x ) \tau_c ( y z ) + (\tau_c)^2 y^2 z^2
\\ \ \\ \ \\
= (\tau_s)^2 ( y^4 + 2 y^2 z^2 + z^4 )
+ 2 \tau_s \tau_c x y^3
+ 2 \tau_s \tau_c x y z^2
+ (\tau_c)^2 x^2 y^2 \\
+ (\tau_s)^2 x^2 y^2
+ 2 \tau_s \tau_c x y z^2
+ 2 \tau_s \tau_c x^3 y
+ (\tau_c)^2 ( z^4 + 2 z^2 x^2 + x^4 ) \\
+ (\tau_s)^2 z^2 x^2 - 2 \tau_s \tau_c x y z^2 + (\tau_c)^2 y^2 z^2
\\ \ \\ \ \\
= (\tau_s)^2 y^4
+ 2 (\tau_s)^2 y^2 z^2
+ (\tau_s)^2 z^4 \\
+ 2 \tau_s \tau_c x y^3
+ 2 \tau_s \tau_c x y z^2 \\
+ (\tau_c)^2 x^2 y^2
\\ \ \\
+ (\tau_s)^2 x^2 y^2
+ 2 \tau_s \tau_c x y z^2
+ 2 \tau_s \tau_c x^3 y \\
+ (\tau_c)^2 z^4
+ 2 (\tau_c)^2 z^2 x^2
+ (\tau_c)^2 x^4 \\
\\ \ \\
+ (\tau_s)^2 z^2 x^2
- 2 \tau_s \tau_c x y z^2
+ (\tau_c)^2 y^2 z^2
\\ \ \\ \ \\
=
(\tau_c)^2 x^4
+ (\tau_s)^2 y^4
+ (\tau_c)^2 z^4
+ (\tau_s)^2 z^4
\\ \ \\
+ 2 \tau_s \tau_c x^3 y \\
+ 2 \tau_s \tau_c x y^3
\\ \ \\
+ (\tau_s)^2 x^2 y^2
+ (\tau_c)^2 x^2 y^2
+ 2 (\tau_s)^2 y^2 z^2
+ (\tau_c)^2 y^2 z^2
+ (\tau_s)^2 z^2 x^2
+ 2 (\tau_c)^2 z^2 x^2
\\ \ \\
+ 2 \tau_s \tau_c x y z^2 \\
+ 2 \tau_s \tau_c x y z^2
- 2 \tau_s \tau_c x y z^2
\\ \ \\ \ \\
=
(\tau_c)^2 x^2 ( 1 - y^2 - z^2 )
+ (\tau_s)^2 y^2 ( 1 - z^2 - x^2 )
+ z^4
\\ \ \\
+ 2 \tau_s \tau_c x y ( x^2 + y^2 )
\\ \ \\
+ x^2 y^2
+ (\tau_s)^2 y^2 z^2
+ y^2 z^2
+ (\tau_c)^2 z^2 x^2
+ z^2 x^2
\\ \ \\
+ 2 \tau_s \tau_c x y z^2 \\
\\ \ \\ \ \\
=
(\tau_c)^2 x^2
- (\tau_c)^2 x^2 y^2
- (\tau_c)^2 z^2 x^2
+ (\tau_s)^2 y^2
- (\tau_s)^2 y^2 z^2
- (\tau_s)^2 y^2 x^2
+ z^2 ( 1 - x^2 - y^2 )
\\ \ \\
+ x^2 y^2
+ (\tau_s)^2 y^2 z^2
+ y^2 z^2
+ (\tau_c)^2 z^2 x^2
+ z^2 x^2
+ 2 \tau_s \tau_c x y
\\ \ \\
=
(\tau_c)^2 x^2
+ (\tau_s)^2 y^2
+ z^2
+ 2 \tau_s \tau_c x y
\\ \ \\
=
(\tau_c)^2 x^2
+ (\tau_s)^2 y^2
+ 1 - x^2 - y^ 2
+ 2 \tau_s \tau_c x y
\\ \ \\
= 1 - ( 1- (\tau_c)^2 ) x^2 ) - ( 1 - (\tau_s)^2 ) y^2
+ 2 \tau_s \tau_c x y
\\ \ \\
= 1 - (\tau_s)^2 x^2 ) - (\tau_c)^2 y^2
+ 2 \tau_s \tau_c x y
\\ \ \\
= 1 - ( \tau_s x - \tau_c y )^2
\\
\]
|